胡兴

来源:光电信息与计算机工程学院发布时间:2025-03-25访问量:5219


一、个人简介:

归属学科专业:仪器科学与技术

胡兴,男,汉族,1983.08出生,副教授,博士生导师(仪器科学与技术),院内任职:无


二、主要学习与工作经历

20166月毕业于上海交通大学航空航天学院获控制科学与工程专业博士学位,同年10月入职上海理工大学光电信息与计算机工程学院测试与信息工程系,20206月至今为测试与信息工程系副教授。


三、主要科研工作与成绩

科研方向涵盖分布式光纤传感、高光谱遥感、计算机视觉、智能机器人、智能交通、深度学习等多个交叉领域,重点关注异常检测、变化检测、事件识别、目标分割、智能感知与决策等核心问题。其研究成果在光纤传感、遥感影像分析、机器人智能感知与控制、深度学习模式识别 方面具有重要贡献,并在 IEEE TIFS、IEEE TIM、IEEE TITS、IEEE IoTJ、Neural Networks、Information Sciences、Remote Sensing、Neurocomputing 等国际知名期刊发表论文。承担的科研项目包括工信部高质量研发专项课题,国家科技重点研发计划子课题,省部级科技项目课题,企业横向课题等,发表论文60多篇,其中SCI论文40余篇,第一作者或通信作者论文20余篇。入选“2025 全球前2%顶尖科学家榜单(Stanford/Elsevier)”。代表性论文如下:

  1. X. Hu, et al, (2018). Squirrel-cage local binary pattern and its application in video anomaly detection. IEEE Transactions on Information Forensics and Security, 14(4), 1007-1022. SCI,中科院一区)

  2. X. Hu, et al, (2022). TOP-ALCM: A novel video analysis method for violence detection in crowded scenes. Information Sciences, 606, 313-327.SCI,中科院一区)

  3. X. Hu, et al, (2024). Dictionary Trained Attention Constrained Low Rank and Sparse Autoencoder for Hyperspectral Anomaly Detection. Neural Networks, 106797. SCI,中科院一区)

  4. X. Hu, et al, (2020). A weakly supervised framework for abnormal behavior detection and localization in crowded scenes. Neurocomputing, 2020, 383, 270-281.SCI,中科院二区)

  5. X. Hu, Dong, Hepeng, Kong, Yong, Yang, Haima, Zhang, Dawei, (2024). Effective zero-shot learning method for event classification in Φ-OTDR sensing systems. Optics Express, 32(20), 35495-35512.SCI,中科院二区)

  6. X. Hu, et al, (2022). Hyperspectral anomaly detection using deep learning: A review. Remote Sensing, 14(9), 1973. SCI,中科院二区)

  7. X. Hu, et al, (2024). TFF-CNN: Distributed optical fiber sensing intrusion detection framework based on two-dimensional multi-features. Neurocomputing, 564, 126959.SCI,中科院二区)

  8. Z. Fan, X. Hu, et al, (2022). A deep learning based 2-dimensional hip pressure signals analysis method for sitting posture recognition. Biomedical Signal Processing and Control, 73, 103432.SCI,中科院二区,通信作者)

  9. W. Jiao, X. Hu, et al, (2024). Open Set Intrusion Event Recognition Using Anchor Point Learning for Distributed Optical Fiber System. IEEE Transactions on Instrumentation and Measurement.73, 2511913SCI,中科院二区,TOP期刊,通信作者)

  10. Z. Zhou, W. Jiao, X. Hu, et al, (2023). Open-set event recognition model using 1-D RL-CNN with OpenMax algorithm for distributed optical fiber vibration sensing system. IEEE Sensors Journal, 23(12), 12817-12827.SCI,中科院二区)

  11. X. Hu, et al, (2024). Integration of an autoencoder and background suppression for hyperspectral anomaly detection. Remote Sensing Letters, 15(9), 977-987.SCI,中科院四区)

  12. X. Hu, et al, (2018). Abnormal event detection in crowded scenes using histogram of oriented contextual gradient descriptor. EURASIP Journal on Advances in Signal Processing, 2018, 1-15.SCI,中科院四区)

  13. X. Hu, et al, (2022). Video anomaly detection based on 3D convolutional auto-encoder. Signal, Image and Video Processing, 16(7), 1885-1893.SCI,中科院四区)

  14. X. Hu, et al, (2023). FlameNet: a lightweight convolutional neural network for flame detection and localisation. International journal of vehicle design, 91(13), 87-106.SCI,中科院四区)

  15. X. Hu, et al, (2024). Open-set marine object instance segmentation with prototype learning. Signal, Image and Video Processing, 2024:1-8.SCI,中科院四区)

  16. X. Hu, et al, (2021). Road crack segmentation using an attention residual U-Net with generative adversarial learning. Math. Biosci. Eng., 18(6), 9669-9684. SCI,中科院四区)

  17. X. Hu, et al, (2014). Anomaly detection based on local nearest neighbor distance descriptor in crowded scenes. The Scientific World Journal, 2014(1), 632575.SCI,中科院四区)

  18. J. He, X. Hu, et al, (2022). Semi-supervised learning for optical fiber sensor road intrusion signal detection. Applied Optics, 61(6), C65-C72.SCI,中科院四区,共同一作)

  19. F. Hu, Z. Zhang, X. Hu, et al, (2023). A scene flow estimation method based on fusion segmentation and redistribution for autonomous driving. IET Control Theory & Applications, 17(13), 1779-1788. SCI,中科院四区,通信作者)

  20. X. Zhou, X. Hu, et al, (2025). A review of fruit ripeness recognition methods based on deep learning. Cyber-Physical Systems, 1-35.EI,通信作者)

  21. H. Yao, X. Hu, (2023). A survey of video violence detection. Cyber-Physical Systems, 9(1), 1-24.EI,通信作者)

  22. B. Fei, W. Yang, W. Chen, Z. Li, Y. Li, T. Ma, X. Hu, L. Ma, (2022). Comprehensive review of deep learning-based 3d point cloud completion processing and analysis. IEEE Transactions on Intelligent Transportation Systems, 23(12), 22862-22883.SCI,中科院一区)


四、主要社会学术团体兼职

   IEEE TCSVTIEEE TMMPattern Recognition等期刊审稿人


五、主要研究方向

  分布式光纤传感、高光谱遥感、计算机视觉、智能机器人、智能交通、深度学习


六、联系方式

18801906756

huxing@usst.edu.cn


返回原图
/